
Multi-perspective Business Process Monitoring

Authors:

Amin Jalali
Paul Johannesson

This is the authors version of a work that was
submitted/accepted for publication in:

Nurcan, Selmin and Proper, HenderikA. and Soffer, Pnina and
Krogstie, John and Schmidt, Rainer and Halpin, Terry and Bider,
Ilia (Eds.) Enterprise, Business-Process and Information Systems
Modeling [Lecture Notes in Business Information Processing,

Volume 147], Springer, Valencia, Spain, pp. 199-213.

The original publication is available at SpringerLink

Notice: Changes introduced as a result of publishing processes
such as copy-editing and formatting may not be reflected in this
document. For a definitive version of this work, please refer to

the published source: 10.1007/978-3-642-38484-4 15

c©Copyright 2013 Springer Berlin Heidelberg

http://www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-38484-4_15


Multi-Perspective Business Process Monitoring

Amin Jalali and Paul Johannesson

Department of Computer and Systems Sciences, Stockholm University, Sweden
{aj,pajo}@dsv.su.se

Abstract. Monitoring business processes is an important area in Busi-
ness Process Management. This area not only supports monitoring but
also enables flexibility. Thus, it has been investigated in many other areas
like Business Activity Monitoring, Exception Handling, Aspect Oriented
Business Process Management, etc. These areas require to define how a
process instance should be monitored from different perspectives. How-
ever, current definitions are coupled to control-flow perspective, which
applies some limitations. For example, we cannot define a rule to capture
situations in which an account balance is read - regardless of its process.

To capture such situations, we propose an approach to define monitoring
rules. This approach enables composition of rules in a way to be decou-
pled from a specific perspective. To validate the result, we implemented
a rule editor and a monitoring service, called Observer Service. These
artefacts are used to support the definition of monitoring rules and track
process instances, correspondingly. Finally, we investigated the validity
and relevancy of the artefacts through a banking case study.

Keywords: Keywords: Business Process Management Systems, Process
Monitoring, Service Oriented Architecture, flexibility

1 Introduction

Business Process Management(BPM) is an important area that supports au-
tomation of business processes. This automation is achieved through BPM life
cycle including process design, configuration, enactment and diagnosis phases [28].
This life cycle resulted in rigid business processes that are not flexible. Therefore,
another phase is added, called adjustment. In this phase, the enacted process
can be adjusted and executed, without repeating the whole life cycle [3, 16].
Both adjustment and diagnosis phases depend on monitoring process instances,
that is achieved by tracking events. Each event is a possible monitoring point in
BPM [23].

Two kinds of adjustment can be performed at runtime, i.e. allowing the pro-
cess instance to be deviated from process specification, or changing the process
specification and migrating the process instance(s) according to new specifica-
tion. These adjustments are categorized under process flexibility as ’flexibility
by deviation’ and ’flexibility by change’ [21]. These types depend on recognition
of needed points (events) in process instances, which are fulfilled through pro-
cess monitoring. Therefore, more capability in capturing events results in more
ability in providing process adjustment and flexibility in action.



2 A. Jalali and P. Johannesson

The adjustment and flexibility should be performed for some monitoring
points in a process instance. These points should be defined using some rules,
called monitoring rules, that specify what information is a matter of interest for
monitoring. Each event carries information related to different perspectives like
control-flow (or process), task (or functional), operation (or application), data,
resource (or organizational), time, etc [1, 20].

There is an implicit order between perspectives when defining a process
model. J. Becker et al, mention that “[t]he data flow is restricted by the control
flow as the data flow cannot precede the control flow” [10]. These restrictions are
valid in process definition. However, they limit process monitoring if we want to
define the monitoring rules with the same approach.

For example, a bank manager might be interested to monitor high value
financial transactions. These transactions can be occurred by different processes
and activities. If we want to define monitoring rules using the control-flow and
task perspectives, we should define a lot of monitoring rules to capture each task
to investigate if the value of the transaction is more than the limit.

In this paper, we solve this problem by proposing an approach to define
monitoring rules independent of any specific process perspective. To do that, we
introduce possible monitoring points in a process instance. Then, we investigate
what sort of information can be found for each point and the relation between
them. As a result, we define an algorithm to evaluate monitoring rules from
different perspectives. To validate our result, we developed two applications,
i.e. the monitoring rule editor and the Observer Service. The editor supports
the definition of monitoring rules based on investigated relation. The service
monitors process instances to check if rules are satisfied or not. Moreover, we
investigated the relevancy of the problem using a banking case study. The actual
implementation of the study using our artifices is in progress.

Therefore, the remainder of the paper is organized as follows. In Section 2,
we give a description of how the rules are defined in different BPM areas. Then,
we present the relation between process perspectives and different states of mon-
itoring life cycles in Section 3. Section 4 demonstrates the rule editor and the
architecture of the implemented service. Section 5 investigates the validity and
relevancy of the artefacts using a banking case study. Section 6 discusses the
limitations of the work. Finally, Section 7 presents directions for future works
and concludes the paper.

2 Background

A lot of areas in BPM paradigm try to define how monitoring points should be
specified such as Business Activity Monitoring(BAM), Exception Handling, As-
pect Oriented Business Process Management(AOBPM), etc. Therefore, different
attempts have been performed to monitor these points. In this section, we look
at some of these attempts in general.

Business Activity Monitoring(BAM) is defined by Gartner as a concept which
enables tracking business operations and making issues visible quickly, based on



Multi-Perspective Business Process Monitoring 3

Fig. 1. Events Ontology [22]

real-time data1. BAM could be implemented through different approaches such
as process mining [27] and real-time monitoring [19]. Process mining enables
tracking of business operations using event logs [7]; while, real-time monitor-
ing detects different monitoring points in process instances and keeps track of
them in action. The process mining is out of our attention, because we focus
on how to define rules to capture various monitoring points in this paper. Def-
inition of rules in BAM has been investigated in different research, e.g. [13, 15,
26]. For example, Pedrinaci et. al. define an event ontology for BAM in [22] (see
Figure 1). The events are categorized into two groups for monitoring, i.e. pro-
cess and activity. The process monitoring event consists of started, suspended,
resumed, terminated, aborted, completed and instantiated events. The activity
monitoring event includes assigned, started, reassigned, relieved, skipped, sched-
uled, aborted, completed, resumed, withdrawn, suspended and skipped. These
events are points that a process instance can be monitored. However, it does not
mean that we have to restrict the definition of rules to them. Such restriction
can end up us with current limitations in defining monitoring rules, which are
coupled to control-flow and task perspectives.

Exception Handling is an important area of BPM, which tries to support flex-
ibility by deviation [2]. Deviations are recognized by tracking some monitoring
points and evaluating some exception rules. Monitoring points are categorized
into five groups, i.e. Work Item Failure, Deadline Expiry, Resource Unavailabil-
ity, External Trigger and Constraint Violation [8, 24]. Each points can be looked

1 http://www.gartner.com/it-glossary/bam-business-activity-monitoring



4 A. Jalali and P. Johannesson

from different perspectives. For example, the task that the work item is going to
perform represents the functional perspective. The resource to whom the work
item is allocated represents the resource perspective. Exception rules specify
when an exception should be captured. Again, definition of exception rules are
coupled with control-flow perspective. For example, these rules are defined using
an exception event attached to an activity’s boundary in Business Process Model
and Notation (BPMN) [14].

Moreover, the same approach can be tracked for handling exceptions in other
works like worklet [9], where the exception types could be recognized in a process
instance using a set of rules, called Ripple Down Rules(RDR) [8]. These rules
could be defined to monitor violations of exception types, which happens for a
specific case or a workitem. This means that the constraint should be mapped
to control-flow or task perspective first. This approach limits the definition of
rules, which needs to be independent of these two perspectives. It means that, if
we want to define a monitoring point for a resource or data perspective, we have
to map it to control-flow or task perspectives. For example, if a customer wants
to get notified when his or her account balance is decreased, we should find all
cases and tasks which have the potential to withdraw money from the customer
account. This limitation is because we are not able to define a constraint for
only data perspective here.

Aspect Oriented Business Process Management(AOBPM) aims to separate
cross-cutting concerns from business processes and model them separately [11,
12, 17]. Separated models need to be weaved at runtime. The weaving requires to
check monitoring points to see whether some aspects are specified for them [18].
Monitoring points are called join points, and rules are called pointcuts. The
rules are defined based on control-flow and task perspectives. This implies some
limitations in defining aspects, e.g. enforcing some security policy when an extra
confirmation is required for activities of a new clerk. Again, we need to define
rules for all tasks of a process instance to check if a new clerk performed it or
not.

To sum up, we found a general approach in definition of monitoring rules
in different areas of BPM. These rules are defined based on control-flow and
task perspectives. Other perspectives can be incorporated in rules when one of
these two perspectives are specified. This implies a lot of limitations for defining
business monitoring points for process instances. In fact, it enforces multiple
definition of rules to capture a business monitoring point. Therefore, we define
a new approach to capture monitoring points and defining rules. In the next
section, we introduce this approach.

3 Approach

Monitoring points can be defined with the help of workitem life cycle. The life
cycle is defined by N. Russell et al [25], and it is general for different Workflow
Management Systems(WfMSs) [29]. It consists of the states that a workitem can
have in its life. States can be changed by transitions(events) (look at the dashed
rectangle in Figure 2). Transitions’ names are started with R or S, representing
whether a resource or the system(WfMS) initiates the transition. A. Rogge-Solti



Multi-Perspective Business Process Monitoring 5

Enabled Created
allocated to a 

single resource Started Completed

Suspended

Failed
offered to 
multiple 

resources

offered to a 
single resource

S:create

S:
cr

ea
te

S:offer_m

R:allocate_s R:start R:complete

R:suspendR:resume

R:fail

R:allocate_s

R:start_s

R:sta
rt_

m

R:allocate_m

S:enable

S:start_on_create

Workitem Lifecycle

Fig. 2. Workitem Monitoring life cycle

et al, define two more states for a workitem life cycle, i.e. init and enabled [23]-
although they do not consider some other states. We could not consider these
states as workitem life cycle states, since the workitem is not created yet. We
also could not find any application of init state, so we exclude it. However, we
consider the enabled state as one of the wokitem monitoring states because it is
important from the monitoring viewpoint. Therefore, we end up with a new life
cycle for monitoring, which is shown in Figure 2

The life cycle starts when the WfMS detects a workitem as enabled. All en-
abled workitem will not be created. For example, when a process model contains
a deferred choice, many workitems can be enabled. However, as soon as one of
them is created, others will not be enabled any more [5]. The created workitem
can be ’offered to a single resource’, ’offered to multiple resources’ or ’allocated
to a single resource’. Moreover, it could be started by the WfMS if it is an au-
tomated workitem. The started workitem can be suspended, and the suspended
workitem can be resumed. The started workitem can also be failed or completed.

Furthermore, we should monitor the process instances, called cases. We rec-
ognized different states, which can be monitored during a case life cycle, i.e.
created, completed, suspended and failed. These states could only be changed
by the WfMS, so we do not incorporate the name of event initiators in event
labels.

Although there is other states during execution of a case and workitem like
cancelled, there are different from one WfMS to the other. Thus, we consider the
general states which exist in most of WfMSs and limit our Monitoring life cycles
to existing states (see Figure 2 and Figure 3). The Workitem and Case Moni-

Created Completed

Suspended

Failed

create complete

suspendresume

fail

Fig. 3. Case Monitoring life cycle



6 A. Jalali and P. Johannesson

Status Control-flow Task Resource
Case Monitoring Lifecycle Case level Workitem level
Created + + (r) - - -
Suspended + + - - -
Failed + + - - -
Completed + + (w) - - -
Workitem Monitoring Lifecycle
Enabled + + - + -
Created + + + (r) + -
offered to a single resource + + + + +
offered to multiple resources + + + + +
allocated to a single resource + + + + +
Started + + + + +
Suspended + + + + +
Failed + + + + +
Completed + + + (w) + +

Perspectives
Data

Fig. 4. The relation between level, states and perspectives

toring life cycles can be used to define monitoring points from different business
process perspectives. Each process model consists of different perspectives, and
each perspective exposes a different kind of monitoring points , so we should
investigate what sort of monitoring points exist in each workitem monitoring
state to define monitoring rules.

Figure 4 shows what monitoring points could be tracked in each state of
Case and Workitem Monitoring life cycle. The control-flow monitoring points
can always be captured in both life cycles. The data perspective is restricted by
control-flow perspective in a way that it is always defined based on control-flow
perspective [10]. Thus, we divide data perspective into two sub-categories, i.e.
case level and workitem level. The case level data can be accessed in all states
of both life cycles. The reading operation of data is performed when the case
is created, so we added ’(r)’ to demonstrate this fact in Figure 4. The writing
operation of data is performed when the case is completed, which is shown by
’(w)’ in the figure. The workitem level data can be accessed in all states of
workitem life cycles, but it cannot be accessed in the enabled state of workitem
monitoring life cycle.

Furthermore, The task monitoring points are available during workitem mon-
itoring life cycle. The resource monitoring points are also available during all
states of workitem monitoring life cycle except enabled and created. In these
states, the resource is not yet offered or allocated, so there is no information
about who will carry on the workitem.

Figure 4 indicates how the rules can be defined for monitoring process in-
stances from different process perspective. For example, if we want to define a
rule to enforce confirmation of all works that have been done by a new clerk, we
should define it as intersect of workitem completed state and resource perspec-
tive in the figure. Other cells in the same row indicate that we can limit this
rule based on other perspectives. For example, we can limit this rule to enforce
confirmation if the amount is greater than a limit. It is possible because we have
the data perspective in this row.

To evaluate these rules, we define an algorithm which shows how different
monitoring points can be analyzed. This algorithm uses basic terms, which are



Multi-Perspective Business Process Monitoring 7

given as follow. The terms start with definition of perspectives, which can have
any number of members. Thus, new perspectives can easily be added as a new
member without changing the algorithm.

Definition 1 (Basic Definition).

– P = {Control-flow,Data,Task,Resource} is a set of Perspectives. Here, we
limit ourself to four perspectives, but they can be added just as a member of
the set.

– L = {Case,Workitem} is a set of Levels. There are two levels for monitoring,
i.e. Case and Workitem. Case represents the executed instance of a process
model. The workitem is an executed instance of a task.

– Wen = {s:enable, s:create, s:start on create, s:offer m,R:start s,R:allocate s,
R:allocate m,R:start m,R:suspend,R:resume,R:fail,R:complete, } is a set of

WorkItem Event Names. These names are derived from Workitem life cycle.
We also added s:enable to monitor the workitem when it gets enabled.

– Cen = {create, suspend, resume, complete, fail} is a set of Case Event Names.
– En = Cen

⋃
Wen is a set of Event Names, which is a union of case event

names and workitem event names.
– Ed = (P, V alue) is EvenetData, which is a tuple. It contains a perspective

and its values.
– Value is a simple string. This string can contain, for example, xml repre-
senting the data perspective.

– Eds = {Ed} is a set of Event Data.
– C = Ed is Condition. The condition is an EventData, which is a tuple con-

taining a perspective and its values. We distinguish between event data and
condition because event data is what happened in execution; while, condition
is abstract representation of the situation that should be monitored.

– Cs = {C} is a set of Condition.
– E = (En, Eds) is Event. The event is a tuple. It includes an event name and

a set of event data. In this way, each event can carry different data from
different perspectives.

Definition 2 (Monitoring Rules Definition).

– M = (L, En) is MonitoringPoint. It is a tuple, which contains a level and
an event name. It means that a monitoring point can be any event in case
or workitem level.

– Ms = {M} is a set of Monitoring Points.
– R = (M, Cs) is Rule, which is a tuple. It contains a monitoring point and

a set of conditions. It means that a rule defines the criteria that capture
monitoring points, which can be limited from different perspectives.

– Rs = {R} is a set of Rules (Ruleset).

The ruleset is used by the observer service to determine if an event satisfies
conditions or not. ’Algorithm 1’ shows how events can be examined to see if
conditions in the ruleset are satisfied. The algorithm gets the event, level and
the ruleset. It checks the rules based on specified conditions in the ruleset, and
returns the set of rules, which are satisfied. The condition can have ’*’ as the



8 A. Jalali and P. Johannesson

value, which means that all values can be accepted. This algorithm is not de-
signed for any specific perspective, so it is general. As a result, by adding any
perspective to the set of perspectives the algorithm will not be changed. This
algorithm are implemented in the Observer service which is described in the next
Section.

Algorithm 1 Evaluate Monitoring Rules

Input: l:L,e:E ,rs:Rs

Output: Rs

1: Rs result;
2: for each R r in rs do
3: if r.M=(l,e) then
4: Boolean ruleResult := true;
5: for each C c in r.Cs do
6: if ruleResult=true AND c.value<>’*’ then
7: for each Ed ed in e.Eds do
8: if ed.P=c.P AND ed.Value<>c.Value then
9: ruleResult := false;

10: end if
11: end for
12: end if
13: end for
14: if ruleResult=true then
15: result.Add(r);
16: end if
17: end if
18: end for
19: return result;

4 Implementation

To enable definition of rules in a way that supports all combinations, we devel-
oped a rule editor and an Observer service. 2 In this section, we describe the
rule editor and the architecture of the service.

4.1 Rule Editor

The rule editor is designed in a very generic way that can be extended easily
to support other states and perspectives. It reads the perspectives and states
from an xml file. The xml indicates what information exists in each event. The
result is shown to the user when s(he) wants to define a monitoring rule (see
Figure 5(b)). This window shows a table which is similar to Figure 4. It consists

2 Both the rule editor and the Observer Service can be downloaded from http://

people.dsv.su.se/~aj/ObserverService/



Multi-Perspective Business Process Monitoring 9

Fig. 5. RuleEditor

of possible levels and states for monitoring points. For each state, the editor
shows what perspectives are available to be limited by monitoring rules. For
example, Data Workitem and Resource are not available for workitem enabled
monitoring points. This awareness supports users to define rules, which comply
to the context of events.

The user can limit the data for each perspective in the editor(see Figure 5(a)).
To do that, the user should select the level (workitem or case) and the state for
which s(he) wants to observe the process. The editor enables the user to apply
some limitation for the monitoring point based on information that exists on
that point. This information can be limited from different perspectives.

For example, the bank manager might be interested to monitor all tasks
that have been done by a specific clerk if s(he) works on collateral which worth
more than 1,000,000 USD in all processes. S(he) should select the row from
the table that has ’Workitem’ as level and ’Completed’ as the state. Then, the
editor recognizes what information is available in that state, i.e. Control-flow,
Data (both in case and workitem levels) and Resource. The control-flow should
not be limited to any process, so ’*’ should be written - which indicates all
processes. The Case-data should not also be limited, so ’*’ should be written.
The Workitem-data should be limited to 1,000,000, so an xpath can be written to
check the data condition, i.e. ’//Collateral/Amount >1000000’. The Resource
should also be limited to the specific clerk, so the name of the clerk can be
written in Resource section.

This editor writes all rules in an XML file, that is used by Observer Service
to monitor process instances. We limited the user to select the level and states
when defining the rule. However, if the user is interested to define a rule for all
levels or states, (s)he can still do that by changing the level or state field to ’*’
in the XML file. The architecture of the service is explained in the next section.

4.2 Architecture

The Observer Service is responsible to track process instances based on monitor-
ing rules, which are composed using the editor. The service is designed based on
Service Oriented Architecture. It monitors process instances using events, which



10 A. Jalali and P. Johannesson

Rule 
Repository

Process
Repository

Org Model

Event 
Log

YAWL 
Process 
Editor

A

R

A

YAWL 
Workflow 

Engine

B X

Users Rule Editor

 

B

R

O

A

Admin worklist

Resource
Service

Observer 
Service

XB

Fig. 6. Observer Services Architecture

are received from WfMS. Therefore, it can be configured to observe any WfMS.
We chose YAWL as a WfMS for which we monitor process instances. YAWL is
selected since it supports full workitem life cycle, and it supports many workflow
patterns. It also has formal definition and semantic. Moreover, it is open-source
and is developed based on Service Oriented Architecture [4, 6].

Figure 6 shows the architecture of our service and its relation to the WfMS.
The service is connected to the YAWL Engine through two interfaces, i.e. B
and X. Interface X is used to monitor case monitoring points and ’s:enable’
event from workitem monitoring life cycle; while, interface B is used to monitor
workitem life cycle.

The resource service also plays an important role here. It is responsible
to offer and allocate workitems to users. Therefore, it initiates changing some
workitem states. This service collaborates with the YAWL engine through inter-
face B to change the state of Workitems. The Interface A is utilized to upload
specification to the engine, when a user launches a new process. The resource
service also reads the organizational model through Interface O, which can be
used for extending monitoring rules.

The Observer Service does not track other services; instead, it tracks the
changes in workitem and case states through the engine. The service also reads
the rules (composed by the Rule Editor) from Rule Repository. The rules specify
which events should be captured. In the next section, we describe the case study
which we conducted to investigate the relevancy of the artefact.

5 Case Study

In this section, we validate the relevance of our artefact using a banking case
study. In this study, we considered different banking process, among them we
chose the release collateral business process. The aim of the process is to release



Multi-Perspective Business Process Monitoring 11

Register 
request

Check 
documents

Validate 
documents

Make 
decision

Contact 
agent

Contact 
legal office

Receive the 
notarized share 

certificate

Validate 
documents

Make 
decision

Release 
share

Send 
certificate and 
congrat. letter

Validate 
documents

Make 
decision

Release 
share

Send certificate 
and congrat. letter

Notify 
customer

Declare 
criminal case

small business manager

high-risk fraud manager

Branch Manager

Resources

Fig. 7. releaseCollateral

the collateral when the debt is not fully paid. The bank can decide about re-
leasing the collateral based on the customer record. There are many types of
collateral such as share, stock, warrant, option and co-signer. We excluded co-
signer collateral since it makes the process much more complex. This complexity
makes presentation of the process not possible in this paper.

Figure 7 shows this process model from the control-flow perspective. The
process starts when a small business manager receives and registers documents
from customer to release his or her collateral. Then (s)he checks all support-
ing documents. If a document is missed, then (s)he asks the customer to send
complementary documents. When all documents are collected, they are sent to
the high-risk fraud manager for additional review and validating the originality
of documents. It is a security policy in the bank to check the originality of all
documents which are received from other parties, except other banks. Then the
branch manager comes up with any of the following situations:

– Declaration of criminal case: If the high-risk fraud manager detects a docu-
ment as fake, the branch manager will declare the case as criminal.

– Completion of documents: The branch manager may ask for more supporting
documents before any decision made to the collateral release.

– Rejection: If s(he) decides the rejection, then the customer will be notified.
– Acceptance: if s(he) accepts the release request, then two different activities

can be performed depending on the type of the collateral:
– If the collateral is stock, warrant or option, then the small business man-
ager contacts the investment brokerage office and receives required infor-
mation such as the most current investment activity statement. Then, the
branch manager decides on the case, i.e. rejection or acceptance. If s(he)
rejects the case, the customer will get notified; otherwise, the requested col-
lateral will be released. Then, the congratulation letter will be sent to the
customer.
– If the collateral is a share, then the small business manager contacts the
Investment broker and the lawyer, who had originally published the share
certificate to the customer. When s(he) receives the notarized share cer-
tificate, the high-risk fraud manager should validate the originality of the



12 A. Jalali and P. Johannesson

document, due to security policy. If the high-risk fraud manager detects the
document as fake, then the branch manager will declare the case as crimi-
nal. Otherwise, the business manager accepts the case, in most of the cases.
However, if s(he) rejects the case, the customer will get notified. In case
of acceptance, the share collateral will be released, and the certificate and
congratulation letter will be sent to the customer.

The business manager might be interested to get notified if someone works
on collateral, which has very high value. The high value is subjective and can be
varied in times, so it should be determined by the business manager. Currently,
we have to define monitoring points for all activities to capture such events.
However, with our artefact we can get this kind of alarm by defining one rule.

The rule is defined as:
<rule process=’releaseAsset’ task=’*’ state=’wi.completed’

data=’\\Collateral \Amount >1000000’ />
The modelling phase of this case study is finished, and the implementation

phase is still on progress. We also found out that if tasks can be categorized, it
would be highly beneficial for defining monitoring points. For example, a bank
manager might be interested to monitor all payment tasks, or all financial tasks.
If tasks’ types can be defined in process models, it can be also used when tracking
them.

6 Limitations

We applied different limitations in different steps of this research such as in
solution, implementation and case study.

In solution, we limit ourselves to general workitem life cycle. This means that
we did not consider some states of case and workitem which are not general in
WfMSs. For example, we did not consider cancelled state in both of life cycles.
Moreover, we did consider limited number of perspectives to define our solution,
i.e. Control-flow, Data and Resource. Therefore, our solution does not cover
other perspectives like time. Although these limitations restrict our solution, it
does not affect the research outcome. It is due to the fact that the solution is
general and can be easily expanded to support other states and perspectives.

In implementation, we did not consider resource perspective because the
YAWL engine is not responsible for that. Indeed, the resource service handles
this responsibility, and the YAWL engine cannot track changes of states, which
are performed by other services. If such state are going to be considered, the re-
source service of YAWL engine should be tracked, instead of the YAWL engine.
As a result, we had to dismiss ’offered to a single resource’, ’offered to multiple
resource’, ’allocated to a single resource’ states. This limitation does not affect
the result, because other perspectives are implemented and investigated. More-
over, the implementation is general and can be easily extended to support other
perspectives if the WfMS supports it.

In case study, we exclude one sort of collateral, which is used in the bank,
due to reducing complexity for presentation. This limitation does not affect our
goal, since we wanted to show the relevancy of the problem in the real domain.



Multi-Perspective Business Process Monitoring 13

Moreover, we currently finished the modelling part of the case study, and it is
not implemented completely. The implementation is in progress.

7 Conclusion and Future Works

In this paper, we presented a generic solution to monitor process instances from
different business process perspectives. This solution recognizes the events as
possible points that can be tracked. Each event carries different information
from a different perspective. Therefore, we consider what sort of information
from what perspective can be monitored in what event. The result was a set of
relations that shows how the rules can be defined to comply with the process
content. To validate the result, we developed two applications, i.e. a rule editor
and an Observer Service. The rule editor supports definition of rules based on
the defined relations. The Observer Service monitors business processes based
on rules, which are defined by rule editor. In this way, we can capture events,
which might be interested from a different perspective.

The relevancy of artefact is investigated by a case study in a banking domain.
In this study, we chose ’releasing collateral’ process. This process is used to
release collateral when the customer has not paid his or her dept completely.
The monitoring rule can restrict monitoring points to those in which someone
works on a collateral having a high value. Despite other approaches that need to
define a lot of rules for each activity to capture this business event, our artefact
monitors it just by one rule. Moreover, we also distinguished the following future
works:

– providing features that enable other services to subscribe for a special event.
– Using Business Rule Management System (BRMS) to define and analyse

more complex monitoring rules.
– Adding more perspectives when defining rules, e.g. time, resource, cost, etc.
– Considering how our artefact can handle more exception handling in process

models.
– Enabling Aspect Oriented Business Process Execution based on this artefact

and investigating how much it supports separation of concerns from different
perspectives.

– Considering how our artefact can extend the Business Activity Monitoring
in terms of defining more measures.

Acknowledgement

We would like to appreciate Mrs. Marjan Taheri from Actax Inc. for her valuable
helps in our case study. We also thank Dr. Petia Wohed to give us valuable
feedback on this work.

References

1. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using
petri-net-based techniques. Business Process Management, pages 19–128, 2000.



14 A. Jalali and P. Johannesson

2. W.M.P. van der Aalst, M. Adams, A.H.M. ter Hofstede, M. Pesic, and H. Scho-
nenberg. Flexibility as a service. In Database Systems for Advanced Applications,
pages 319–333. Springer, 2009.

3. W.M.P. van der Aalst, A. Adriansyah, A.K. Alves de Medeiros, F. Arcieri, T. Baier,
T. Blickle, J.C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, et al. Process
mining manifesto. In BPM 2011 Workshops Proceedings, pages 169–194. Springer-
Verlag, 2012.

4. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and
implementation of the yawl system. In Advanced Information Systems Engineering,
pages 281–305. Springer, 2004.

5. W.M.P. van der Aalst, A. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.
Advanced workflow patterns. In Cooperative Information Systems, pages 18–29.
Springer, 2000.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: yet another workflow lan-
guage. Information Systems, 30(4):245–275, 2005.

7. W.M.P. van der Aalst and A. Weijters. Process mining: a research agenda. Com-
puters in Industry, 53(3):231–244, 2004.

8. M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
extensible and context-aware exception handling for workflows. On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, pages
95–112, 2007.

9. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages
291–308, 2006.

10. J. Becker, M. Rosemann, and C. von Uthmann. Guidelines of business process
modeling. Business Process Management, pages 241–262, 2000.

11. C. Cappelli, F.M. Santoro, J.C.S. do Prado Leite, T. Batista, A.L. Medeiros, and
C.S.C. Romeiro. Reflections on the modularity of business process models: The
case for introducing the aspect-oriented paradigm. Business Process Management
Journal, 16(4):662–687, 2010.

12. A. Charfi and M. Mezini. Aspect-oriented web service composition with ao4bpel.
Web Services, pages 168–182, 2004.

13. C. Costello and O. Molloy. Building a process performance model for business
activity monitoring. Information Systems Development, pages 237–248, 2009.

14. R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business
process models in bpmn. Information and Software Technology, 50(12):1281 –
1294, 2008.

15. S. Goedertier and J. Vanthienen. Designing compliant business processes with
obligations and permissions. In Business Process Management Workshops, pages
5–14. Springer, 2006.

16. A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process
lifecycle. In 10th Int’l Conf. on Enterprise Information Systems (ICEIS’08), pages
154–161, June 2008.

17. A. Jalali, P. Wohed, and C. Ouyang. Aspect oriented business process modelling
with precedence. In Business Process Model and Notation - 4th International
Workshop, pages 23–37. Springer, 2012.

18. A. Jalali, P. Wohed, and C. Ouyang. Operational semantics of aspects in business
process management. In On the Move to Meaningful Internet Systems: OTM 2012
Workshops, volume 7567, pages 649–653. Springer, 2012.

19. J.G. Kang and K.H. Han. A business activity monitoring system supporting real-
time business performance management. In Convergence and Hybrid Information



Multi-Perspective Business Process Monitoring 15

Technology, 2008. ICCIT ’08. Third International Conference on, volume 1, pages
473 –478, nov. 2008.

20. A. Lanz, B. Weber, and M. Reichert. Workflow time patterns for process-aware
information systems. Enterprise, Business-Process and Information Systems Mod-
eling, pages 94–107, 2010.

21. N. A. Mulyar, M. H. Schonenberg, Mans, and van der Aalst. Towards a Taxonomy
of Process Flexibility (Extended Version). In BPM Center Report BPM-07-11.
BPMcenter.org, 2007.

22. C. Pedrinaci, J. Domingue, and A. Alves de Medeiros. A core ontology for business
process analysis. The Semantic Web: Research and Applications, pages 49–64, 2008.

23. A. Rogge-Solti and M. Weske. Enabling probabilistic process monitoring in non-
automated environments. Enterprise, Business-Process and Information Systems
Modeling, pages 226–240, 2012.

24. N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Exception handling
patterns. Process-Aware Information Systems. Technical report, BPM Center Re-
port BPM-06-04, BPMcenter. org, 2006.

25. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
resource patterns: Identification, representation and tool support. In Advanced
Information Systems Engineering, pages 11–42. Springer, 2005.

26. S. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business
process compliance. Business Process Management, pages 149–164, 2007.

27. B. van Dongen, A. De Medeiros, HMWM Verbeek, AJMM Weijters, and W.M.P.
van der Aalst. The prom framework: A new era in process mining tool support.
Applications and Theory of Petri Nets 2005, pages 1105–1116, 2005.

28. M. Weske, W.M.P. van der Aalst, and HMW Verbeek. Advances in business process
management. Data and Knowledge Engineering, 50(1):1–8, 2004.

29. P. Wohed, N. Russell, A.H.M. ter Hofstede, B. Andersson, and W.M.P. van der
Aalst. Patterns-based evaluation of open source bpm systems: The cases of jbpm,
openwfe, and enhydra shark. Information and Software Technology, 51(8):1187–
1216, 2009.


	1
	2

