
Towards Aspect Oriented Adaptive Case
Management

Authors:

Amin Jalali
Ilia Bider

This is the authors version of a work that was
submitted/accepted for publication in:

Enterprise Distributed Object Computing Conference Workshops
and Demonstrations (EDOCW), 2014 IEEE 18th International

The original publication is available at ieeexplore

Notice: Changes introduced as a result of publishing processes
such as copy-editing and formatting may not be reflected in this
document. For a definitive version of this work, please refer to

the published source: 10.1109/EDOCW.2014.30

c©Copyright 2014 IEEE

http://dx.doi.org/10.1109/EDOCW.2014.30
http://dx.doi.org/10.1109/EDOCW.2014.30


Towards Aspect Oriented Adaptive Case
Management

Amin Jalali
Department of Computer and Systems Sciences (DSV)

Stockholm University
Email: aj(at)dsv.su.se

Ilia Bider
Department of Computer and Systems Sciences (DSV)

Stockholm University
Email: ilia(at){dsv.su—ibissoft}.se

Abstract—Separation of concerns has long been an important
strategy in the software systems development to cope with the
complexity embedded in such systems. The same type of concerns,
like security concerns, is often repeated in many modules of a
system, which hinders the consistency, re-usability, change and
maintenance of the system. Aspect orientation aims to separate
and encapsulate these concerns to solve the complexity problem.
This paper introduces the use of aspect orientation for case
and adaptive case management through changing the rules that
govern business processes on the fly. It introduces a taxonomy
of such rules based on the declarative workflows approach. It
also shows how so-called form-based case management systems
could be extended to support aspect orientation to reduce the
complexity problem.

Keywords—Adaptive Case Management, Aspect Oriented, Busi-
ness Process, Declarative, State Space

I. INTRODUCTION

Business Process Management (BPM) is an important
area which aims to support operational activities in business
processes to achieve business goals. The operational activities
can vary in different instances of a business process of the
same type, which makes it necessary to support the flexibil-
ity in business processes to reflect the deviations. However,
the amount of deviations can be significantly high in many
situations that challenge supporting business processes in an
effective way. To support such processes, a new type of
business process support systems is needed to enable on the
fly adaptability.

Adaptive Case Management (ACM) is a paradigm to sup-
port adaptability of processes in volatile environments. Unlike
BPM systems, which consider the control-flow as a dominant
dimension for supporting business processes, ACM considers
data as the primary core around which processes are to be

Control

Data

Data

Control

BPM Centric Approach ACM Centric Approach

Fig. 1. BPM vs. ACM approaches, adapted from [29]

supported (see Fig. 1) [29]. ACM aims to support business
processes that are driven by knowledge workers; therefore, it
allows a high degree of flexibility since such workers need
more freedom to complete their work. Indeed, the important
part in ACM is to store and trace the results of actions
completed in the frame of a process instance/case, which are
recorded as data. This data can be considered as defining the
state of the process instance, while actions can be considered
as an aim to achieve the desirable changes in the state.

ACM and BPM aim to achieve different goals through
different ways of separation of concerns, e.g., data, control-
flow and human resources. Separation of concerns has long
been considered as an approach to deal with the complexity
in system development. Concerns can be defined in many
different ways. For example, in BPM, business processes can
be defined based on different perspectives, such as control-
flow, data, resources. Each perspective encapsulates different
constraints regarding different concerns. Although the con-
straints become separated through perspectives of a process
model, models can still become very complex due to the
number of constraints that they should incorporate in the main
concern/perspective. Therefore, other separation techniques
are introduced to deal with the complexity of the process
models, like horizontal, vertical and orthogonal modularization
techniques [20].

One sort of concerns, e.g. security, can be applicable for
many business processes. Without separation that encapsulates
each concern in one place, these concerns scatter over the
process models, which introduces the scattering problem.
Separated concerns can be modeled once and be called by
different process models, yet this approach introduces another
problem known as tangling. The rules of application of the
concerns are determined by each concern on its own. This
means that if the rule is changed, all process models which
can be affected should be found and un-tangled or tangled. The
scattering and tangling problems challenge the maintenance of
the system, decrease the re-usability of modules that imple-
ment the concerns, and can result in violation of consistency
of the system. The concerns that introduce the scattering and
tangling problems are called cross-cutting concerns.

To deal with scattering and tangling problem, the so-called
aspect oriented principle is followed in many disciplines to
separate cross-cutting concerns from the main models. This
principle is usually applied in deterministic areas, where the
order of operations can be predicted like programming, service
composition and workflow based business processes. Unlike



these areas, the order of activities cannot be always determined
in ACM System. Thus, it is interesting to investigate how
these concerns can be separated in such systems. In this paper,
we investigate how the aspect oriented principle could be
applied in ACM Systems to enable separation of cross-cutting
concerns. More specifically, the paper exploits the usage of
declarative rules for enabling this principle in ACM Systems.

The rest of this paper is structured as follows. First, an
overview of aspect orientation and declarative rules is given
in section II. Then, a proposal for how aspect orientation
could be introduced to ACM using declarative rules is given
in section III. Then, a short description of how a form-based
case management system could be extended to support aspect
orientation is given in section IV. Finally, a short summary of
the finding and directions for the future work is presented in
section V.

II. BACKGROUND

This section gives a summary of applying aspect orientation
in programming, service composition and business process
management domains. It also gives a short summary of declar-
ative rules that will be used later to propose an aspect oriented
approach for ACM.

A. Aspect Oriented Programming

It is a common problem in the software systems devel-
opment to support the realization of so-called cross-cutting
concerns. These concerns are scattered in many modules, and
their applicability for each module is not known by the module.
Thus, even if the concerns of a given type are all encapsu-
lated in one module, other modules will be tangled to the
encapsulating module, which is called the tangling problem.
The concerns that cause scattering and tangling problems are
called cross-cutting concerns. In the domain of programming,
Aspect Oriented Programming (AOP) aims at solving these
problems [19].

AOP has been considered as a solution to modularize cross-
cutting concerns in programs [19]. For example, a logging
mechanism can be considered as a cross-cutting concern candi-
date, which is scattered in the system code. To change scattered
code, a programmer should find all pieces used for logging and
change them. Even if the programmer encapsulates them in a
separate module, the changes in the condition of the usage of
this module require finding and updating all reference points.
These problems increase the cost of maintenance, reduce
the re-usability, and hinder the traceability of the concerns.
AOP proposes implementing concerns as individual program
modules and linking them to the core concern in order to
solve the problems of code tangling and code scattering. It
also defines some basic terminology, listed below:

• Join points. Join points are defined as identifiable
points in the application [21]. These points enable the
addition of one or several cross-cutting concerns to
a program module. There are three different types of
join points, i.e. field, method and type. These types
are also called signatures.

• Pointcut. An expression in a formal language that
defines relevant join points in the software system. For

example, suppose logging needs to be executed when
more than 500 EUR is withdrawn from an account.
An expression that specifies this condition constitutes
a pointcut. An appropriate pointcut language should
be able to express a condition of the above kind in a
systematic manner applicable to all similar conditions.

• Advice. A construct that enables adding or altering
behavior in the program module; these constructs
represent cross-cutting concerns, like the security con-
cern. An advice could be executed before, after, or
around a so-called advised join point. An advised join
point designates the join point for which the advice
should be executed.

• Weaving. A mechanism to alter the structure of a core
concern using the execution of cross-cutting concerns.
The weaving mechanism executes advices for advised
join points that are determined with the help of the
pointcut expressions.

• Aspect. A module which contains one or more cross-
cutting modules is called an aspect. An aspect con-
tains pointcuts and advices. For example, the security
concern can be implemented in a module called the
security aspect. This aspect can contain a pointcut
and an advice. The pointcut specifies the advised
join points on which the advice should be executed.
The advice specifies the security code that should
be executed before, after, or around the advised join
point.

B. Aspect Oriented Service Composition

The investigation of aspect orientation in the program-
ming area inspired a new direction of research in service
composition where cross-cutting concerns could be separated
from the service specifications. Thus, aspect orientation is also
investigated in service decomposition to enable separation of
cross-cutting concerns. AO4BPEL [7], [8] represents one of
the examples of using aspect orientation in the service science.
AO4BPEL is an extension to the Business Process Execution
Language (BPEL) to support aspect orientation. This extension
is defined based on the soap message life-cycle in which
Charfi defines the order of advices as: “before → around →
before soapmessageout → around soapmessageout → around
soapmessagein → after soapmessagein → after” [6].

C. Aspect Oriented Business Process Management

This section gives a short overview of the existing attempts
to introduce aspect orientation in the BPM domain.

In business process modeling, some works introduce ele-
ments in process models which call the aspects to solve scatter-
ing problems, e.g. [30], [28], [10]. Although these approaches
solve the scattering problem through using aspects, they fail to
solve the tangling problem [14]. Other works introduce rules
that connect process models and aspects, e.g. [9], [5]. For
example, Charfi et al. propose an aspect oriented extension
to Business Process Model and Notation (BPMN) [24] called
AO4BPMN [9]. Cappelli et al. [5] propose another aspect
oriented extension to BPMN.



In Business Process Enactment area, Jalali et al. [17] pro-
pose operational semantics for aspect oriented business process
enactment using Coloured Petri Nets [18]. The semantics is
implemented as a service in Yet Another Workflow Language
(YAWL) [1]. YAWL is a workflow managemeent systems
following the Worklfow Reference Model [11]. It is designed
and implemented based on Service Oriented Architecture, and
it has formal definition for syntax and semantics. This service
is tested on a banking case that shows how separation of cross-
cutting concerns can add value to BPM.

Furthermore, there are works aimed at investigating dif-
ferent applications of aspect orientation in BPM domain. For
example:

• How aspect oriented business process modeling can
help managing process variability is investigated
in [22].

• How goals can help in identifying aspects in process
models is investigated in [27].

• How heuristics methods can help in identifying as-
pects is explained in [26].

• How aspect oriented approaches can be assessed in
the BPM area is defined in [14].

• How aspect oriented business process models can be
discovered from event logs is explained in [13].

Despite differences in the approaches of introducing aspect
orientation in BPM, we can differentiate some common basic
constructs:

• Join points. To avoid the tangling problem, the relation
between modules and realization of concerns should
not be explicitly defined in models. Instead, the system
should monitor actions that try to change the state,
and it should evaluate if some concerns should be
considered for such actions. A point that a system uses
to monitor an action is called a join point. In BPM
area, these points are activities in process models,
since the flow of activities is the main focus of BPM.

• Pointcuts. Pointcut is a rule (e.g., an expression) that
defines joint points of a certain kind; this rule is used
by the system for monitoring joint points. A pointcut
rule defines whether a specific concern is applicable
in a particular point of a process instance execution.
Pointcuts are defined based on information (data) used
in actions intended at changing the state of the system.

• Advices. The realization of a cross-cutting concern is
called an advice. Advices are actions of the same kind
as other actions defined in the system. For example,
a module of code is considered as an advice in AOP,
while a process model can be considered as an advice
in BPM [16].

• Aspects. A group of advices with similar goals is
called an aspect. Charfi et al, define security, privacy,
logging and some other groups of cross-cutting con-
cerns as aspects in BPM area [9].

Furthermore, there are two steps that an aspect oriented
system should support in order to solve both scattering and
tangling problems: join point selection, and advice injection.

In join point selection, the system monitors join points
based on the pointcuts rules. This step is very important since
it increases the level of support for separation of cross-cutting
concerns [14]. In AO4BPMN [9], the join point selection is
based on control-flow. Therefore, this approach is not able
to select join points based on other perspectives like data or
resources. In the extension proposed by Cappelli et al. [5],
the selection is based on data and control-flow perspectives.
Thus, it provides a better level of separation in comparison to
AO4BPMN [14]. Jalali et al. explain how the multi-perspective
selection can increase the level of support for separating cross-
cutting concerns in [15].

In advice injection, the system incorporates advices appro-
priate for the points determined in the join point selection step.
These advices should be enforced in appropriate places either
in the process model itself or during the process instances
execution, i.e. on the fly. Injecting advices in a process
specification is called static weaving, while injecting advices
in the process instances execution is called dynamic weaving.
In BPM area, the appropriate places are defined as ’before’,
’after’, or ’around’ in relation to the advised join point.

Both join point selection and advice injection steps are
depended on pointcut rules. This paper introduces the use
of declarative rules to enable aspect orientation in ACM.
A summary of the declarative rules defined for workflow
management systems is given in the next section. These rules
serve as a basis for defining pointcuts for the ACM domain in
III.

D. Declarative Workflows

Classical workflow systems lack support for flexibility and
change management, which constitutes a problem in the dy-
namic business environment of today. Business processes need
to be flexible in both managing deviations in process instances
and adapting to more permanent changes in the environment.
Therefore, it is very important to support the flexibility along
providing support for running processes. Fig. 2 shows the rela-
tion between providing flexibility and support for business pro-
cesses. On one hand, there are very structured processes, which
needs a high degree of support like production workflows. On
the other hand, there are unstructured processes, which require
a high degree of flexibility like knowledge intensive processes
such as health care processes. Declarative workflow aims to
make balance between these two requirements. It provides
some degree of flexibility while providing enough support at
the same time, which suits knowledge intensive processes more
than classical workflow systems.

Fig. 3 shows different sort of constraint, which exists
in a business process, i.e. forbidden, optional, or allowed.
Forbidden constraints are those which should not happen.
Optional Constraints are those which can be violated; however,
the system shows a warning if violation happens. Allowed
constraint cannot be violated in a business process. In classical
workflow systems, everything is forbidden except what is ex-
plicitly specified as allowed [2], while the declarative workflow
covers all types of constraints, including the optional ones.

Fig. 3b shows a comparison between these two approaches,
where the traditional approaches only support allowed con-
straints using control-flow specification. The workflow speci-



Fig. 2. Process Aware Information Systems (PAIS) Spectrum: Flexibility and
Support [2]

fication can cover many allowed constraints while considering
many scenarios in the model. However, this makes the model
very complex. The declarative approach aims to support both
allowed and optional constraint by preventing the actions
defined by forbidden constraint to happen. Five constraint
types can be defined in declarative workflows [25]:

• Existence constraints specify how often an action
should be taken in a trace.

• Choice constraints allow specification of n-out-of-m
choices in a trace.

• Relation constraints restrict the orders between actions
through enforcing some relations among them.

• Negation constraints define the prohibition paths in a
trace.

• Branching constraints specify relation and negation
constraints involving more than two actions.

In workflow systems, the above constraints are used to
control the order of execution of tasks. In this paper, we
adapt these constraints to enable advice injection in case
management systems. The details regarding these categories

Fig. 3. Constraints in Business Processes [2]

are explained while discussing their application to aspect
oriented ACM in the next section.

III. APPROACH

This section proposes an approach to enable aspect orien-
tation in ACM systems. It explains how join point selection
and advice injection could be applied to the ACM domain.

To select a join point, we need to track changes in the
state space of a process. The change in data recorded in the
system moves the ACM system from a state to a new state [3].
ACM systems need to control the movement between states in
the system in a way to produce information history, capture
the results of tasks execution, notify people about available
tasks, etc. [29]. The movement from one state to another
can be considered as potential paths which can be obligatory,
optional, or prohibited. Fig. 4 shows a system which is moved
from state s to s’. The state of the system can be changed
to one of the potential states through potential obligatory or
optional paths. These alternatives can be defined through four
categories of rules of movement in the state space: obligations,
recommendations, negative recommendations and prohibitions
as proposed in [4]. Obligations can be considered as obliga-
tory paths which should be followed. Recommendations and
negative-recommendations can be considered as optional paths,
and prohibitions can be considered as prohibited paths.

s s'

}

}

}

Obligatory 
Potential Paths

Optional 
Potential Paths

Prohibited 
Potential Paths

------------------------------------------------------------------------------------

Fulfilled states 

Potential states 

Fulfilled path

Potential path

Fig. 4. Potential Paths to move in the state space

There are different ways to control movement in the state
space of an ACM system. As an example, the movement
between states could be controlled by form based rules, as
it is done in iPB, which is a case-oriented business process
support system [3]. iPB provides forms for knowledge workers
to report the result of business operations, thus forms represent
actions aimed at changing the state of the system. These forms
are available to a knowledge worker based on certain rules that
define who can change the state of the system and in which
direction.

In practice, it is impossible to have all information that
is needed for movement in the state space before an action
is started; some information is obtained during the execution
of the action. For example, if a clerk in a bank has the
right to transfer money with some limitation, he/she has the
right to access the transfer money form, but some security
check should be added to the form for that user. This addition
constitutes an advice from the aspect orientation point of view.
The security check will require additional actions when the
user signs a transaction with the amount that exceeds the
limitation assigned to his/her category of users. Such actions



can include changing the nature of potential paths through the
state, for example, an optional path can become obligatory.

Summarizing the deliberation above, to inject an advice,
the system should be able to alter the potential paths based
on the evaluation of pointcut rules. To define possible pointcut
rules and advices that correspond to them, this paper proposes
using trace constraints, which are defined in BPM to manage
the control perspective based on occurrence of activities in
a trace [25]. To adapt the rules, we, first, introduce the
concept of lifecycles for actions in ACM and connect it to
the movements in the state space. This allows us to interpret
the ideas from [25] in the terms more acceptable for ACM.

A. Action Lifecycle in ACM

This section introduces the idea of a lifecycle for actions
in ACM. Fig. 5 shows the states of the action lifecycle, and
their relations to the system state. An action can be selected,
which is shown by Selected state in the action lifecycle.
Selecting of an action does not change the state of the system
visible for other actions. The results achieved by the selected
action are preserved in a temporary, or intermediate state of
the system. As soon as the temporal state of the system is
changed by the action, the selected action is considered to be in
the In Progress state in the action lifecycle. The selected
action can be canceled or committed, which is shown using
Canceled and Committed states in the action lifecycle.
The cancellation of an action brings the state of the system to
original state, i.e. S in the figure. However, the commitment
of an action moves the state of the system forward, i.e.
S’ in the figure. Furthermore, selecting an action already in
progress can be considered as cancellation of the previous in
progress action and selecting it again as a new action. This
lifecycle enables the system moving between states based on
commitment/cancellation of different actions.

Selecting of actions is governed by rules that allow, prohibit
the movement to the targeted by the action state. According
to our previous work [3], in ACM the structure of the system
state may not be fixed, and selecting a certain action may mean
extending the state space with new dimensions, which will be
explored in the next sections.

B. Join Point Selection

Join points can be defined in ACM as actions which intend
introducing changes in the state of the system. Based on this
definition, we can introduce two types of joint points - action
selection, and action commitment. The first one is related to
the intention of changing the system state in a certain direction
without defining details on how the new state would like; the
second one includes these details.

C. Advice Injection

Advice injection can be defined as changing the potential
paths through the system state space based on the results
of join point evaluation. If the evaluation of the joint point
results in the need of injecting an advice, the set of possible
paths through the system space should be reconfigured. The
reconfiguration can be done by changing the rules that govern
the system like:

Selected

In Progress

CommitedCanceled

s s'

Intermediate 
state

Sy
st

em
 S

ta
te

s
A

ct
io

n
 L

if
ec

yc
le

The relation between system state and action lifecycle state

Action transition

cancel
Progress

Commit

Commit

Action lifecycle transition

Fig. 5. Action Lifecycle

• Some actions that have been allowed become prohib-
ited

• Some actions that were not mandatory, or even prohib-
ited became mandatory, i.e. new obligations are added.
In addition, some options that were prohibited may
become allowed or even mandatory. With addition of
new options and obligations, there may arise a need
to extend the state space of the system, so that a
path defined by new options and obligations becomes
possible.

The above can be done in both cases, when the joint point
is selecting an action, and when committing it. However, for
the joint point of the second type, there is another possibility.
The temporal state that is allowed to commit when considering
it without the advice injection may become improper when
the advice injection is added. In this case, the commitment is
rejected, and a new targeted state for the action in progress
is defined. Again, if needed, the space space of the system
can be extended in order to define this new targeted action.
The commitment is rejected, and the process participant who
tries to commit the action gets instructions on the new rules
of commitment. He/she then can choose to cancel the action,
or leave it in progress until all necessary changes in the
intermediate state are completed, and the action is allowed
to commit under the new rules that resulted from the advice
injection.

As the case of joint point that coincide with commitment
has more options, below, we only consider the joint points
of this kind. The discussion will apply to the joint points
that represent action selection, except of the rules that prevent
committing an action.

The re-configuration of a path can be performed through
definition of so-called pointcuts. This paper proposes using
some of the five types of constraints, which are described in
section II to define how paths should be re-configured.



D. Defining pointcuts with the help of trace constraints

The pointcuts we introduce in this paper are defined using
trace constraints introduced in II. Though in II we have
introduced five types of constraints; only two of them are
appropriate for defining pointcuts in the frame of the approach
presented above, namely relation constraints and negation
constraints; both are described in the subsections below.

1) Relation constraints: These constrains restrict the or-
dering of actions by imposing some restrictions on a trace of
states in an ACM system. Fig. 6 shows different sort of relation
constraints which can be used for restricting actions paths. The
first column indicates the name of constraint, and the second
one defines the meaning. These relations are defined in the
form accepted for declarative workflows to support flexible
execution of activities [23]. In the text that follows, these
constraints are explained in the form more appropriate to the
case management systems domain in light of Fig. 5.

A case management system should configure the path for
each constraint as follows:

1) Responded existence. The system can commit the join
point if and only if action A has been occurred before
it, or action A is defined as mandatory in the path that
goes through the state to be committed. If neither is
true, the system should (a) insert rules that makes
A mandatory after the commitment and commit, or
(b) prevent commitment of the join point to enforce
action A to happened before the commitment, or
(c) prevent commitment and require changes in the

JP A
if the pointcut rule is met then
A should be occur ether before or 
after the join point completion

1. responded 
existence

Graphical 
representation

MeaningConstraint

if the pointcut rule is met then 
eventually A occurs after the 
completion of the join point

2. response

if the pointcut rule is met then 
eventually A occurs after the 
completion of the join point 
without other occurrences of the 
join point in between

3. alternate 
response

if the pointcut rule is met then 
then A occurs in the next
position after completion of the 
join point

4. chain 
response

if the pointcut rule is met then 
A occurs before completion of the 
join point

5. precedence

if the pointcut rule is met then 
A occurs before completion of the 
join point without other 
occurrences of the join point in 
between

6. alternate 
precedence

if the pointcut rule is met then 
A occurs in the next position 
before the completion of the join 
point

7. chain 
precedence

JP A

JP A

JP A

A JP

A JP

A JP

Fig. 6. Relation Constraints, adapted from [23]

intermediate (temporary) state that would make A
mandatory or allows insertion of the rules that makes
A mandatory.

2) Response restriction. The system can commit the join
point if and only if action A has been occurred before
it, or action A is defined as mandatory in the path that
goes through the state to be committed. If none of the
conditions are true, the system should (a) insert rules
that make A mandatory after the commitment and
commit, or (b) prevent commitment of the join point
to enforce action A to happen before the commitment,
or (c) prevent commitment and require changes in
the intermediate (temporary) state that would make A
mandatory or allows insertion of the rules that makes
A mandatory.

3) Alternate response restriction. The system should fol-
low the response restriction scenario, except it should
also ensure having a prohibition of the same action as
the join point’s action until action A happens. In case
such prohibition does not exist, the system should add
it or not commit the transaction until such prohibition
becomes natural or can be added.

4) Chain response restriction. The system should follow
the response restriction scenario, except it should also
ensure having a prohibition of any action until action
A happens. In case that such prohibition does not
exist, the system should add it or not commit the
transaction until such prohibition becomes natural or
can be added.

5) Precedence restriction. The system can let commit-
ment of the join point if and only if action A has
been occurred before it. Otherwise, the system should
prevent commitment of the join point to enforce
action A to happen before the commitment.

6) Alternate precedence restriction. The system should
follow the precedence restriction scenario, except it
should also check whether the same action as the
join point’s action has already happened after action
A. In the latter case, the system should cancel the
join point’s action.

7) Chain precedence restriction. The system can let
commitment of the join point if and only if action
A has been occurred exactly before it. Otherwise,
the system should prevent commitment of the join
point to enforce action A to happen exactly before
the commitment.

There are other restrictions defined for declarative systems
in [23], such as co-existence, succession, alternate succession
and chain succession that are not applicable for our framework
and therefore are excluded from the list in Fig. 6.

2) Negation constraints: The negation constraints specify
negative relations between actions, so they are appropriate
to define the prohibition path for the state space. Fig. 7
shows three negation constraints, which are used in declarative
workflows [23]. In the text that follows, these constraints are
explained in the form more appropriate to the case manage-
ment systems domain in light of Fig. 5.

A case management system should configure the path for
each constraint as follows:

1) Not co-existence constraint. The system should check



if the pointcut rule is met then the 
join point and A cannot occur
together

1. not co-
existence

if the pointcut rule is met then A 
cannot eventually occur
after completion of the join point

2. not 
succession

if the pointcut rule is met then 
A cannot occur in the next
position after the completion of 
the join point

3. not chain 
succession

JP A

JP A

JP A

Graphical 
representation

MeaningConstraint

Fig. 7. Negation Constraints, adapted from [23]

whether action A has been executed before or not. In
case the action has been executed before, the sys-
tem should cancel the action. Otherwise, the system
should check if a prohibition rule for action A will be
in place after commitment. If yes, the action can be
committed. Otherwise, the system should add such a
prohibition, or, if it is not possible, require changes
in the intermediate (temporary) state that would make
A prohibited or allows insertion of a rule that makes
A prohibited.

2) Not succession constraint. The system should check
if a prohibition rule for action A will be in place after
commitment. If yes, the action can be committed.
Otherwise, the system should add such a prohibition,
or, if it is not possible, require changes in the interme-
diate (temporary) state that would make A prohibited
or allows insertion of a rule that makes A prohibited.

3) Not chain succession constraint. The system should
check if a prohibition rule for immediate execution
of action A will be in place after commitment. If yes,
the action can be committed. Otherwise, the system
should add such a prohibition, or, if it is not possible,
require changes in the intermediate (temporary) state
that would make immediate execution of action A
prohibited or allows insertion of a rule that makes
immediate execution of action A prohibited.

IV. IMPLEMENTING ASPECT-ORIENTATION IN
FORM-BASED CASE MANAGEMENT SYSTEMS

In this section, we demonstrate how the cross-cutting con-
cerns could be implemented in case management systems. As
an example, we will consider their implementation in the iPB
tool [12] that supports building form-based case management
systems. First, we shortly describe the notions on which iPB
is built, and then discuss how iPB could be augmented to
implement the cross-cutting concerns.

A. Short overview of iPB

A case management system is built in iPB based on the
following four interconnected concepts: Process map, Process
step, Process form, Form field. The basic relationships between
these concepts are as follows.

• A process map consists of a collection of named
process steps arranged on a two-dimensional surface
called process layout. The layout consists of two areas:

(a) the upper row called flow-independent steps, and
(b) a lower area, which is a two dimensional matrix
called flow-dependent steps, see Fig. 8.

• Each process step in a process map has a step form
attached to it.

• A step form consists of a collection of named fields
arranged in a two-dimensional matrix called form
layout, see Fig. 9. Each field belongs to a certain
type. There are simple types, like, text, multi-text,
date, date-time, option list, checkbox (Boolean), etc.,
and complex types like uploaded file, journal, person,
organization. In addition, field collections that belong
to different step forms can intersect. This is done by
defining fields in one form, and then referring to them
in other forms.

Fig. 8. Process map

Fig. 9. Step form for step Lectures/Lesson preparation from Fig. 8

The runtime system interprets step forms as web forms
for inputting, viewing and changing information, see Fig. 10.
The process map constitutes a mechanism for user navigation
through these forms serving as a table of content for a
particular process instance, see Fig. 8. To open a web-form,
the user clicks on the step in the instance map (see Fig. 8).
As it can be seen from Fig. 8, some steps are allowed to have
multiple forms at runtime (see the tabs for each lecture in
Fig. 10).



Fig. 10. Step form from Fig. 9 as a web-form

Fig. 11. Instance process map from Fig. 8 as a user navigation mechanism

The normal order of accessing the forms is from top to
bottom and from left to right. However, the map itself does
not prevent to skip some steps or to begin a process instance
with a form that is placed in the middle of the layout. If
constraints on the access order are needed, they are established
by so called business rules. One type of such rules controls
whether the user can open a particular step form based on
the state of commitment of other forms. Steps that cannot yet
be clicked on are colored gray, see Fig. 11. Such rules are
specified with the help of a square matrix where both rows
and columns correspond to the steps defined in the process.
In this matrix, the content of a cell can determine that the
row step can be started only after the column step has been
commitment (blue color in Fig. 8), or started (green color in
Fig. 11). Other types of rules prescribe synchronization of steps
with multiple forms, e.g., steps “Lectures/Lessons preparation”
and “Lectures/Lessons commitment” in Fig. 8 and 4. Yet other
types of business rules establish when data in a step form can
be saved or the step can be closed. Such rules are expressed
via defining some fields on a form as mandatory for save, or
close.

As with the access order, the map itself does not define
who has rights to access web forms, and which rights, e.g.
read, modify, close, etc. The rights are defined in user profiles
created with the help of a special module called Profile editor.

B. Implementing cross-cutting concerns in iPB

As it can be seen from the description in the previous
section, iPB already implements the idea of temporal state and
its commitment. Selecting a form to fill constitutes selecting
an action to complete. Filling the form constitutes creating
a temporal state. Marking the form as finished, i.e. closing
the form, constitutes commitment of the temporal state. iPB
already includes one kind of post-conditions for commitment,
some fields on the form can be defined as mandatory for close.
If a user tries to close the form without filling these fields, an
error message will be issued. This message will require the
user to undertake additional efforts related to filling mandatory
for close fields. Another type of conditions for committing a
temporal state can be defined with the help of the Profile editor
via limiting the access rights for closing a particular form to a
special category of users. The user who tries to close the form
for which he/she does not have access rights for close will get
a message that will require him/her to ask somebody else to
complete the action.

Cross-cutting concerns could be introduced in iPB through
post-conditions rules invoked at the time of committing/closing
the form. As the cross-cutting concerns are of general nature,
they cannot be connected to particular forms. One way of
defining a cross-cutting rule could be through attaching it to
a fragment consisting of a group of fields that can be found
in several forms. A rule attached to this fragment can, for
example, prohibit closing a form by a particular category of
users dependent on the values inputted in the fields of the
fragment. Getting a notification when trying to close a form
that includes the fragment to which the rule is attached, the
user can decide to change the values, and then commit, or ask
a user with the proper access rights to close the form (commit
the temporal state). A field representing the amount of money
included in a financial transaction could constitute a fragment
to attach a rule that limits the amount of money processed by
a junior financial officer independently of the nature of the
transaction. Trying to complete a transaction with a greater
than the limit value will result in a message that gives the
officer two options, either diminish the value, or invite a senior
officer to commit the transaction.

Another way to introduce the same limitation is by adding
authorization for a junior officer. When the officer commits
the transaction, a new form is added for a senior officer
to authorize the transaction. The latter can be considered as
extending the state space of the current process instance. In
addition, an obligation is added requiring this form to be
filled and committed before any other form is committed
in the current instance of the process. This implementation
corresponds to the Chain response restriction introduced in
III, see Fig. 6.

Note that neither of the implementations discussed above
are implemented in iPB at this time. The goal of this section is
to show how cross-cutting concerns could be implemented in
a business process support system that is built on a paradigm
completely different from the workflow paradigm, of which
declarative workflows are a particular case. The discussion
shows that the rules introduced in III, though defined based on
the works from the declarative workflows domain, have more
general nature and can be applied to case management systems
based on the state-oriented paradigm. In addition, the fragment



dependent rules suggested above has no correspondence to
the paths rules discussed in III, thus requiring extending the
taxonomy introduced in the previous sections of this paper.

V. CONCLUSION

This idea paper proposes an approach to changing on the
fly rules that govern execution of business processes based
on aspect-oriented principles and declarative constraints. It
defines the lifecycle for actions and connects it to changes
in the state of a business process support system. It proposes a
taxonomy of aspect-oriented rules that enable changing the
path in the state space on the fly. It also discusses how
the proposal could be used to extend existing form-based
case management system systems, such as iPB. The paper
shows how to achieve separation of cross-cutting rules from
standard actions, which could increase the re-usability of
rules, and facilitate easier maintenance of the system. The
approach needs further investigation, and it requires to be
implemented in an case management system to be validated.
By presenting the approach before such validation, we hope to
inspire other researchers to investigate the usage of declarative
constraints to introduce aspect orientation in Business Process
Management in order to achieve a higher degree of flexibility
when controlling the execution of activities.

REFERENCES

[1] W. Aalst, L. Aldred, M. Dumas, and A. ter Hofstede. Design and
implementation of the YAWL system. In A. Persson and J. Stirna,
editors, CAiSE, volume 3084 of LNCS, pages 281–305. Springer,
Springer, 2004.

[2] W. Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research
and Development, 23(2):99–113, 2009.

[3] I. Bider, A. Jalali, and J. Ohlsson. Adaptive case management as a
process of construction of and movement in a state space. In Y. Demey
and H. Panetto, editors, On the Move to Meaningful Internet Systems:
OTM 2013 Workshops, volume 8186 of Lecture Notes in Computer
Science, pages 155–165. Springer Berlin Heidelberg, 2013.

[4] I. Bider and A. Striy. Controlling business process instance flexibility
via rules of planning. International Journal of Business Process
Integration and Management, 3(1):15–25, 2008.

[5] C. Cappelli, F. Santoro, J. do Prado Leite, T. Batista, A. Medeiros, and
C. Romeiro. Reflections on the modularity of business process models:
The case for introducing the aspect-oriented paradigm. BPM Journal,
16:662–687, 2010.

[6] A. Charfi. Aspect-oriented workflow languages: AO4BPEL and appli-
cations. PhD thesis, der Technischen Universitat Darmstadt, Darmstadt,
November 2007.

[7] A. Charfi and M. Mezini. Aspect-Oriented Web Service Composition
with AO4BPEL. In L. Zhang and M. Jeckle, editors, Web Services,
volume 3250 of LNCS, pages 168–182. Springer Berlin Heidelberg,
2004.

[8] A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented extension to
bpel. World Wide Web, 10(3):309–344, 2007.

[9] A. Charfi, H. Müller, and M. Mezini. Aspect-Oriented Business
Process Modeling with AO4BPMN. In T. K. et al., editor, Modelling
Foundations and Applications, volume 6138 of LNCS, pages 48–61.
Springer, 2010.

[10] D. C. Collell. Aspect-oriented modeling of business processes. Master’s
thesis, der Technischen Universitat Darmstadt, Darmstadt, 2012.

[11] D. Hollingsworth. Workflow management coalition - the workflow
reference model. Technical report, Workflow Management Coalition,
Jan. 1995.

[12] IbisSoft. ipb reference manual, 2010. http://docs.ibissoft.se/node/3.

[13] A. Jalali. Aspect Mining in Business Process Management. In to appear
in Proc. 13th International Conference on Perspectives In Business
Informatics Research (BIR), 2014.

[14] A. Jalali. Assessing Aspect Oriented Approaches in Business Process
Management. In to appear in Proc. 13th International Conference on
Perspectives In Business Informatics Research (BIR), 2014.

[15] A. Jalali and P. Johannesson. Multi-Perspective Business Process
Monitoring. In S. N. et al., editor, Enterprise, Business-Process and
Information Systems Modeling, volume 147 of LNBIP, pages 199–213.
Springer Berlin Heidelberg, 2013.

[16] A. Jalali, P. Wohed, and C. Ouyang. Aspect oriented business process
modelling with precedence. In J. M. et al., editor, BPMN, volume 125
of LNCS, pages 23–37. Springer, 2012.

[17] A. Jalali, P. Wohed, C. Ouyang, and P. Johannesson. Dynamic weaving
in aspect oriented business process management. In R. Meersman,
H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. Leenheer, and
D. Dou, editors, CoopIS 2013 Conferences, volume 8185 of Lecture
Notes in Computer Science, pages 2–20. Springer Berlin Heidelberg,
2013.

[18] K. Jensen, L. Kristensen, and L. Wells. Coloured petri nets and cpn
tools for modelling and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer, 9(3-4):213–254,
2007.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In M. Akit
and S. Matsuoka, editors, ECOOP’97 Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer Berlin Heidelberg, 1997.

[20] M. La Rosa, P. Wohed, J. Mendling, A. ter Hofstede, H. Reijers, and
W. M. P. Van der Aalst. Managing process model complexity via
abstract syntax modifications. Industrial Informatics, IEEE Transactions
on, 7(4):614–629, 2011.

[21] R. Laddad. AspectJ in Action. Manning Publications Co., second edition
edition, 2003.

[22] I. Machado, R. Bonifácio, V. Alves, L. Turnes, and G. Machado. Man-
aging variability in business processes: an aspect-oriented approach. In
Proceedings of the 2011 international workshop on Early aspects, EA
’11, pages 25–30, New York, NY, USA, 2011. ACM.

[23] F. M. Maggi, R. J. C. Bose, and W. M. van der Aalst. A
knowledge-based integrated approach for discovering and repairing
declare maps. In Advanced Information Systems Engineering, pages
433–448. Springer, 2013.

[24] OMG. Business Process Model and Notation (BPMN), Version 2.0,
2011. availble on http://www.omg.org/spec/BPMN/2.0/PDF/, accessed
Mar 2012.

[25] M. Reichert and B. Weber. Enabling flexibility in process-aware
information systems: challenges, methods, technologies. Springer, 2012.

[26] F. Santos, C. Cappelli, F. Santoro, J. do Prado Leite, and T. Batista.
Analysis of heuristics to identify crosscutting concerns in business
process models. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC ’12, pages 1725–1726, New York, NY,
USA, 2012. ACM.

[27] F. Santos, J. Sampaio do Prado Leite, C. Cappelli, T. Batista, and
F. Santoro. Using goals to identify aspects in business process models.
In Proceedings of the 2011 international workshop on Early aspects,
EA ’11, pages 19–23, New York, NY, USA, 2011. ACM.

[28] A. Shankardass. The dynamic adaptation of an aspect oriented business
process in a service oriented architecture platform. Master’s thesis,
Athabasca University, Athabasca, Alberta, 2009.

[29] K. Swenson. Comparison: Acm vs. bpm‘, Jan. 2010.
http://www.xpdl.org/nugen/p/adaptive-case-management/public.htm.

[30] J. Wang, J. Zhu, H. Liang, and K. Xu. Concern oriented business
process modeling. In e-Business Engineering, 2007. ICEBE 2007. IEEE
International Conference on, pages 355–358, 2007.


